Multifuntional linkers for Expansion Microscopy

Jianjun Huang Surpervisor: Dr. Volker Leen, Prof. Johan Hofkens November 6 2024

From your old biology textbook,

To what it looks like under the electron microscope:

Function floating freely

Condensed & Crowded

Nature volume 599, pages 147–151 (2021)

Very dense 3D information with an enormous degree of differentiation Organized and interactive

The development of ExM

Grafting/Clarity

Expansion Microscopy

In CLARITY, hydrogel crosslinks with protein (in the brain) to preserve structural and molecular information for further imaging and analysis at reduced background.

And that looks like this: adult mouse brain imaging

The unconfirmed tale of how ExM came about:

It was around the years of 2013-2014 when someone in Ed Boyden's lab at MIT probably said: "Now, while perfectly clear after two days, those hydrogels have an annoying tendency to swell..."

"Wait, can we not use that?"

Chung et al., *Nature.*,2013, **497** (7449): 332

Expansion microscopy (ExM)

1. label structures of interest

Reporter

= Specific targeting molecule

= Anchor for covalent grafting

- 2. Introduce anchoring molecule (if not included in label)
- Introduce monomers for ExM polymer
- 4. Trigger polymerization reaction

Homogenize mechanical properties through proteinase K treatment

Figure 1. Concept figure explaining the ExM protocol.

•Anchoring: The labeled molecules are anchored to a polymer network, typically a hydrogel.

•Digestion: Enzymes partially digest the sample to allow it to expand evenly.

• **Expansion**: The hydrogel is swollen with water, enabling microscopes to capture detailed cellular structures.

A perfect case for organic chemistry!

Covalent grafting

Expanded Imprint of Biological Sample

The project is about "linkers"

- Reagents that literally "link" information to signal and matrix
- From a biological sample to a fully imprinted model
- All biological information to be addressed
- Linking is permanent, read-out multiplexed and cycled.

Chen et al., Science. 347 (6221): 543

A perfect case for organic chemistry!

Super-resolution Microscopy drawbacks

- Expensive hardware
- Specialized operators
- Specific organic dyes/ fluorescent proteins

Advantages of Expansion Microscopy

- Enhanced resolution
- Compatibility with various biomolecules and thick tissues
- Multiplexed and high-content imaging

So, at the 14th Conference on Methods and Applications in Fluorescence, in Würzburg, Germany (2015), after seeing a lecture of Boyden on his recent paper, we devised the following:

a. TRITON concept

b. Example structure

So somewhere in 2018, this finally got tested

Donato Valli

Pre-ExM GAM (A, B) and Post-ExM GAM (C, D) stained HeLa cells (alfatubulin). Images recorded with LEICA TCS SP8 X CM, 63x wobj.

First step: Focus on Dye Synthesis

In-depth Analysis of Linker Molecules: Focus on Dyes

Survival rate

Readily extended to direct immunostaining with primary AB's

Enabling lipid membrane and cytoskeleton staining

Gang Wen

Dye (Rh B)

Monomer

Reactive Ester

Primary antibodies, ×4 ExM

Wen et al., ACS nano, 2020, 14(7): 7860-7867

Primary AB anti Tubulin staining.

Primary AB anti Lamin staining.

Post-coupling of the dye allows for flexibility and dye selection

Maleimide

Monomer

• Short oligonucleotides can replace the dye, for post gelation staining and barcoding

or → precouple the antibody

Excellent for split-mix approaches:
Only add reagent and use commercial
Azide Oligonucleotides

Oligo-mediated immunofluorescence

or → graft the docking probe

Allows the use of your current AB-Oligo conjugates without modification and with cheap Reporting probes (no mods)

Azide variant for color switching & post gelation staining

Small-molecule ligands for structural elements/cytoskeleton in ExM

Small-molecule ligands for structural elements/cytoskeleton

And this is what the first images looked like back in 2019:

Pre-ExM (A, B) and Post-ExM (C) Rhodamin B Phalloidin stained HeLa cells (F-actin). Images recorded with LEICA TCS SP8 X CM, 63x wobj (A, B), 40x wobj (C).

Insights in structural requirements

Small-molecule ligands for structural elements/cytoskeleton

- Labeling is reliable, even in view of large variety of ExM protocols
 - > So far, reagents work across all ExM protocols tested (radical based)

 $89 \pm 11 \text{ nm (n= 53)}$

4-fold expansion Distance (µm) 15 20 25 30 35 40 45 50 55 60 Rescaled actin filament FWHM (nm)

Scale bars: 50 μm (a, c), 10 μm (b, d).

TREx: 10-fold expansion

Scale bars: 50 μm (a, c), 10 μm (b, d).

Post-digestion labeling offers signal flexibility

TREx: 10-fold expansion

13a

Actin Staining in ExM combined with Immunostaining

b a **Microtubules** Mitochondria

Actin +

Actin +

Scale bars: 50 um (a, b, c, e, f, g), 10 um (d, h).

Actin Staining: Pushing resolution with Microscopy

4x ExM-SIM

Scale bars: 10 um (a-d).

Chain Extended Rho 6G

- Strong absorption 1.15×10⁵ M⁻¹ cm⁻¹
- Extraordinarily high fluorescence quantum yield 94%
- High thermal and photo-stability
- Moderately hydrophilic
- Carries a net electric charge of +1
- Excited efficiently in the range 515 545 nm, λ_{abs} 533 nm / λ_{fl} 557 nm
- A suitable excitation source for **Chain extended Rho6G** is the 532 nm line of the frequency-doubled laser.

Conclusions and Outlook

Conclusions:

Approach of multifunctional linkers for ExM is now well accepted, with several groups iterating on the concept.

- Various types of biological information addressable.
- Improved signal retention
- Simple protocols
- Compatible with different ExM modalities

What next?

- Single approach for oligo-tagged read out of multiple targets at different levels of expression
- Use of Multifunctional linkers a scaffold in error-corrected read-outs
- Extension into non-radical based gel formulas
- Further mechanistic understanding on the issue of "AcX always helps!"

Key References:

- Wen, ACS Nano, 2020, 14(7), 7860
- Wen, J. Am. Chem. Soc, 2021, 143(34),13782
- Wen, Chemical Reviews, 2023, 123(6), 3299
- Wen, ACS Nano, 2023, 17(20), 20589

Acknowledgements & Contacts

A big thanks to Dr. Gang, Dr. Volker Leen, Prof. Dr. Johan Hofkens

Contact:

Johan Hofkens (PI): johan.hofkens@kuleuven.be

Volker Leen: Volker.leen@chrometra.com

Gang Wen: gang.wen@uni-wuerzburg.de

Jianjun Huang: jianjun.huang@kuleuven.be

General Inquiries, projects

Reagents

Protocols & Technical details

Protocols & Technical details

