Sample preparation for Transmissdion Electron Microscopy

Corrado Bongiorno: IMM-CNR, Catania

- •The right thickness
- .How to obtain a good sample
- Mechanical preparation
- Drop casting
- .Ultramicrotome
- .New developments

Transmission Electron Microscopy

Very powerfull technique

Main drowback is the sample preparation

- O Beam Electron
- Atomic Shell Electron
- Electron Cloud
- Beam Electron Path
- Secondary Electron Path
- —Characteristic X-Ray

Electron/matter interaction

Every interaction has different cross-section.

Cross-section change with incident energy and materials

Electrons are strongly absorbed

The right thickness

Increasing thickness increase noise/signal ratio

In TEM I(t) should be very similar to I_0

t ~ λ

 λ = mean free path

λ change with incident electron energy Change with materials

Larger is λ more «transparent» is the material.

The right tickness is λ dependent

 t/λ is the parameter used for different materials comparison.

 $t/\lambda=1$ is usually a good sample.

 $t/\lambda=1$ in silicon at 200keV means t=150nm

 $t/\lambda=1$ in gold at 200keV means t=40nm

- HR-TEM Image: Multiscattered elastic electrons $(t/\lambda = 0.3 1.5)$
- HR-STEM image: High angles scattered electrons $(t/\lambda = 0.3 2)$
- EDX: secondary emissions due to inelastic events $(t/\lambda = 1-3)$
- EELS: Inelastic transmitted single scattered electrons $(t/\lambda = 0.3 1)$

Sample thickness

 t/λ EELS calculation

How to obtain a good sample

Polishing/grinding Systems

Focused Ion Beam

Cryo-EM

MODEL 910

Grinder

Dimond saw

Dimple grinder

Final Ion milling process

From 5 to 0.1 keV Ar⁺ ion beam

Less then 1mm wide beam

Local high temperature (300°C)

Precision Ion Polishing Sistem

Preparation time:

3h – 2 days

Suitable Area:

20-60um, high depth

Only for planar and large area distribution sample

Wedge mechanical preparation

Tripod

Dimond films

Metallic cilinder for wax embedding

- •Wax envelope of large particles
- •lon milling surface remover.
- Chemical etching for junction delineation
- Deposition on pre-prepared samples

50 nm

If I want to look there?

Focused Ion Beam

- Precise position
- Uniform thickness
- 10x10μm wide area

Drop Casting

- Continuous carbon layer (50nm)
- Lacey carbon film
- Ultra-thin carbon layer on lacey.

Ultramicrotome

Ultramicrotome

Dimond blade

Trains of lamellae

In-situ gas and liquid sample holder

- Precise deposition
- Thin particle size
- Right reactions

