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1997: spherical aberration correction. 

Maximilian Haider, Harald H. Rose, Knut 

W. Urban

M. Haider, H. Rose, S. Uhlemann, B. Kabius, and K. Urban, Journal of Electron 

Microscopy 47(5), 395 (1998)

The basic theory of aberration correction for high–

resolution imaging was introduced by Dr. Otto Scherzer in 

the 1940’s. Many researchers attempted, but failed, its 

implementation as an aberration – corrected electron 

microscope; and experts had questioned its technical 

feasibility by the time the Haider, Rose and Urban, who 

thought otherwise, was teamed in 1989. 

In 1997 they succeeded in making an aberration-corrected 

TEM that is capable of high-resolution imaging of atomic 

structures.



0.1

Electron

Microscope (EM)

Light Microscope

1800 1840 1880 1920 1960 2000 2040

105

104

1000

1

Year

100

10

re
s
o

lu
ti
o

n
 (

Å
) 

Aberration–

corrected EM



(110) Si

Atomic resolution Scanning Transmission Electron Microscopy
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More Moore: memory devices based on novel materials
Phase Change Memories based on chalcogenides
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In thin films the local atomic order of chalcogenides is extremely important in determining 
their electrical properties. 
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Nanoscale tailoring of Schottky metal/MoS2 barrier by oxygen plasma 
functionalization 

MoS2 promising material for next generation post–Si
CMOS technology

The high effective mass and large bandgap of MoS2 minimize
direct source–drain tunneling, while its atomically thin body
maximizes the gate modulation efficiency in ultrashort–
channel transistors.
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magnetic prism



Leverage innovation beyond the Moore’s law
Innovation in line with Moore’s law (which predicts the continuous shrinking of transistor feature size) will certainly 
continue, but additional advances are expected from exploring solutions beyond the Moore’s law, such as those 
enabled by wide–bandgap semiconductors in the field of power–electronics

Within 20 years, the greatest part of the electrical energy used 
worldwide will be managed by power-electronics
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4H–SiC Power MOSFET

Issues:
High density of traps at SiO2/SiC interface, low channel 
mobility
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Atomic resolution HAADF–STEM

@ 60 keV primary electron beam
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The buffer layer present on the planar (0001) face gets detached from the substrate on the (112n)
facets of the steps, turning into a quasi–freestanding graphene film
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… I would like to try and impress upon you while I am talking about 

all of these things on a small scale, the importance of improving the 

electron microscope by a hundred times. It is not impossible; it is 

not against the laws of diffraction of the electron ... What good 

would it be to see individual atoms distinctly?

Fulfilling Feyman’s Dream

December 29th 1959 at the annual meeting of the American Physical 
Society at California Institute of Technology

Conclusions
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