Upscale to Intermediate TRL / Large Area Deposition
The present application represents an upscale of the standard version of this technique, and it is meant to be specifically applied to/operate on 6" samples, or larger.
Optical lithography is a fast patterning technique as all patterns are transferred to the photoresist through the mask in parallel. This requires that the relevant photomasks are already available or that they also need to be fabricated usually by electron beam lithography (in the case of non-standard patterns). Standard photomasks are made of fused quartz coated with a layer of chromium. During mask fabrication Cr is etched away where the geometric patterns need to be. This way UV light has a clear path through the mask, so as to expose the photosensitive resist and transfer the patterns, while Cr acts as a light-stop layer to prevent the illumination of the rest of the photoresist. The most common UV light wavelengths used in standard photolithography are the 436 nm ("g-line"), the 405 nm ("h-line") and the 365 nm ("i-line"), all being spectral lines of an Hg lamp. The achievable resolutions at these wavelengths go down to below 1 μm. There are different modes one can perform standard photolithography either with the mask being in contact with the resist-coated sample (contact lithography) or leaving a small gap (proximity lithography) each one having its own advantages and disadvantages.
Select instruments to view their specifications and compare them (3 max)
Milano